
Formalizing the Ring of Witt Vectors
Johan Commelin

jmc@math.uni-freiburg.de
Albert–Ludwigs-Universität Freiburg

Freiburg, Germany

Robert Y. Lewis
r.y.lewis@vu.nl

Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Abstract
The ring of Witt vectorsW𝑅 over a base ring 𝑅 is an impor-
tant tool in algebraic number theory and lies at the founda-
tions of modern 𝑝-adic Hodge theory.W𝑅 has the interesting
property that it constructs a ring of characteristic 0 out of a
ring of characteristic 𝑝 > 1, and it can be used more specif-
ically to construct from a finite field containing Z/𝑝Z the
corresponding unramified field extension of the 𝑝-adic num-
bers Q𝑝 (which is unique up to isomorphism).

We formalize the notion of a Witt vector in the Lean proof
assistant, along with the corresponding ring operations and
other algebraic structure. We prove in Lean that, for prime 𝑝 ,
the ring of Witt vectors over Z/𝑝Z is isomorphic to the ring
of 𝑝-adic integers Z𝑝 . In the process we develop idioms to
cleanly handle calculations of identities between operations
on the ring ofWitt vectors. These calculations are intractable
with a naive approach, and require a proof technique that is
usually skimmed over in the informal literature. Our proofs
resemble the informal arguments while being fully rigorous.

CCS Concepts: • Theory of computation → Type the-
ory; • Mathematics of computing → Mathematical anal-
ysis; • Security and privacy → Logic and verification.

Keywords: formal math, ring theory, number theory, Lean,
proof assistant

ACM Reference Format:
Johan Commelin and Robert Y. Lewis. 2021. Formalizing the Ring of
Witt Vectors. In Proceedings of the 10th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP ’21), January 18–
19, 2021, Virtual, Denmark. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3437992.3439919

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’21, January 18–19, 2021, Virtual, Denmark
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8299-1/21/01. . . $15.00
https://doi.org/10.1145/3437992.3439919

1 Introduction
Formalizing a full undergraduate mathematics curriculum
has long been a goal of the proof assistant community [31].
This horizon is arguably now in sight: most topics in the
standard curriculum can be found in at least one major proof
assistant library. As researchers, though, we cannot simply
take this as a win. With undergraduate mathematics done
we must turn to new challenges.

Formalizations of modern research mathematics are laud-
able, but remain rare for good reason. Such projects tend to
take massive efforts [10, 13], to formalize only part of the
main result [28], or to target theorems that are exceptionally
well-suited for mechanization [7].

This scarcity of results is hardly surprising. Mastery of un-
dergraduate topics is necessary to do research mathematics,
but far from sufficient: Buzzard, Commelin, and Massot [3]
note the depth of theory that is needed even to define the
structures studied in many subfields. We may be nearing the
first horizon of undergraduate mathematics, but the sea be-
tween us and the second horizon—graduate mathematics—is
vast, little explored, and filled with adventures.

As a new expedition into this sea, we have constructed
the ring of 𝑝-adic Witt vectors and related operations in the
Lean proof assistant and verified some of their fundamental
properties. Specifically, we define the Teichmüller lift and
the Frobenius and Verschiebung operators, and show that
the ring of Witt vectors over Z/𝑝Z, the integers modulo
𝑝 , is isomorphic to the 𝑝-adic integers. To our knowledge,
these topics have never before been formalized in a proof
assistant. Our development pushes forward the front line of
formalizations in ring theory.
Our project resulted in substantial additions to the ring

theory and multivariate polynomial sections of Lean’s math-
ematical library mathlib [21]. Building on Lewis’ develop-
ment of the analytic properties of the 𝑝-adic numbersQ𝑝 and
𝑝-adic integers Z𝑝 [17], we have established more of their
algebraic properties: we show that Z𝑝 is a discrete valuation
ring and is the projective limit of the rings Z/𝑝𝑛Z of integers
modulo 𝑝𝑛 . Our project also served to stress test Lean 3’s
type class inference mechanism in an algebraic context.
The early theory of Witt vectors was developed in the

1930s [25, 32]. They form a fundamental tool in algebraic
number theory and lie at the foundations of modern 𝑝-adic
Hodge theory. For example, they provide an elegant way
to construct unramified Z𝑝-algebras with prescribed finite
residue fields of characteristic 𝑝 . The ring ofWitt vectors also

https://doi.org/10.1145/3437992.3439919
https://doi.org/10.1145/3437992.3439919

CPP ’21, January 18–19, 2021, Virtual, Denmark Johan Commelin and Robert Y. Lewis

appears in the definitions of Fontaine’s period ring 𝐵dR [9],
an important component in the classification of 𝑝-adic Galois
representations. Indeed, all the ingredients for the definition
of 𝐵dR have now been formalized in Lean.

Witt vectors have a reputation among mathematicians of
being forbidding and impenetrable. Presentations often skip
the details of technical proofs and lengthy calculations; these
can become nightmarish unless approached very carefully.
Onewould reasonably expect a formalization to be evenmore
nightmarish, but we have found idioms in our development
that often lead to short, clean proofs and calculations, clearer
than their traditional counterparts. In many cases, we have
been able to reduce goals to universal calculations in the
language of rings (Section 4.4), which can be discharged
by very simple tactics (Section 5.3). We believe that these
statements and proofs are mathematically legible. We were
not able to erase the details in every case, though. Our proofs
that certain polynomials are integral are long, slow, and
unreadable, just as they are on paper.

Our formalization is integrated into mathlib. We provide
up-to-date information and links to the source code on the
project website:

https://leanprover-community.github.io/witt-vectors

2 Preliminaries
The formalized contributions described in this paper can be
roughly split into three parts:

1. We expand the algebraic theory of the ring of 𝑝-adic
integers Z𝑝 (Section 3).

2. We define the notion of a Witt vector over an arbitrary
ring 𝑅 (Section 4) and construct a ring structure on the
set of Witt vectors itself, additionally defining some
fundamental operations on this ring (Section 5).

3. We show that the ring of Witt vectors over Z/𝑝Z is
isomorphic to Z𝑝 (Section 6).

Parts 1 and 2 are independent of each other; part 3 bridges
the first two.

To give the reader a high-level overview of the mathemat-
ical content of our formalization, we sketch here the route
that we will follow. Since there is extensive introductory
literature on the 𝑝-adic numbers we focus on the latter parts.
Our main reference for part 1 is Gouvêa [11], although much
is folklore. Parts 2 and 3 primarily follow Hazewinkel [14].

2.1 Q𝑝 and Z𝑝
The analytic perspective on the 𝑝-adic numbers Q𝑝 defines
them analogously to the real numbers R. For a fixed prime
number 𝑝 , Q𝑝 is the Cauchy completion of the rationals Q
with respect to the 𝑝-adic norm, an alternative to the familiar
absolute value which is small for numbers whose numerators
are divisible by large powers of 𝑝 . The field operations and
norm on Q lift to Q𝑝 . The 𝑝-adic integers Z𝑝 are the 𝑝-adic
numbers with norm at most 1; they form a ring.

. . .
1
4
1
4
1
4
1
4
1
4
1
4
1
44

+ 1
0

. . .
1
3
2
1
1
3
2
1
1
3
2
1
1
32

× 3
1

. . .
1
3
1
1
1
3
1
1
1
3
1
1
1
32

+ . . . 44444444
. . . 31313131

Figure 1. If we represent Z𝑝 as left-infinite streams of digits,
we can perform addition and multiplication in base 𝑝 by
carrying remainders to the left. 5-adically, . . . 444444 + 1 = 0
and . . . 313132 × 3 = 1.

We can alternatively give an algebraic characterization
of the 𝑝-adics. From this perspective, we take Z𝑝 to be the
projective limit of Z/𝑝𝑛Z in the category of rings and Q𝑝 to
be the field of fractions of Z𝑝 .
Either perspective allows us to see 𝑧 ∈ Z𝑝 as an infinite

sum
∑∞

𝑘=0 𝑧𝑘𝑝
𝑘 where 𝑧𝑘 ∈ Z, 0 ≤ 𝑧𝑘 < 𝑝 for each 𝑘 . (While

this sum may diverge in the standard absolute value, it al-
ways converges in the 𝑝-adic norm.) This is particularly clear
from the algebraic perspective, as the 𝑛th partial sum cor-
responds to an approximation to 𝑧 in Z/𝑝𝑛Z. One can thus
picture a 𝑝-adic integer as a left-infinite base-𝑝 expansion of
digits (Fig. 1).
The 𝑝-adic numbers are fundamental to many areas of

number theory. Amongmany other applications, they appear
in the studies of Diophantine equations [16] and rational
points on algebraic varieties [22], and lie at the core of the
Hasse principle in Diophantine geometry [2].

2.2 The Ring of 𝑝-Typical Witt Vectors
Fix a prime number 𝑝 and a commutative ring 𝑅. The under-
lying set of the ring of 𝑝-typical Witt vectorsW𝑅 is the set of
functions N→ 𝑅. (Note that the prime number 𝑝 is usually
suppressed in the notationW𝑅.) One usually pictures a Witt
vector 𝑥 as a left-infinite sequence of coefficients:

(. . . , 𝑥𝑖 , . . . , 𝑥2, 𝑥1, 𝑥0), 𝑥𝑖 ∈ 𝑅.

A very illustrative example to keep in mind isW(Z/𝑝Z), in
which the coefficients 𝑥𝑖 are integers modulo 𝑝 . Readers may
recognize the similarity to Z𝑝 , and we will eventually show
that they are isomorphic as rings, although this isomorphism
is not the map that preserves the sequence of coefficients.

We will now describe some properties ofW𝑅.
First,W𝑅 is a commutative ring of characteristic 0, even if

𝑅 has characteristic 𝑝 > 1. For Witt vectors 𝑥 = (. . . , 𝑥1, 𝑥0)
and 𝑦 = (. . . , 𝑦1, 𝑦0) inW𝑅, the addition and multiplication
are defined as follows:

𝑥 + 𝑦 = (. . . , 𝑆𝑖 (𝑥,𝑦), . . . , 𝑆1 (𝑥,𝑦), 𝑆0 (𝑥,𝑦))
𝑥 · 𝑦 = (. . . , 𝑃𝑖 (𝑥,𝑦), . . . , 𝑃1 (𝑥,𝑦), 𝑃0 (𝑥,𝑦))

(2.2.1)

where the 𝑆𝑖 , 𝑃𝑖 ∈ Z[. . . , 𝑋1, 𝑋0, . . . , 𝑌1, 𝑌0] are certain poly-
nomials that we will specify in Section 4.2. Importantly, these
operations are not the familiar componentwise addition and
multiplication of sequences. The 𝑛th entry, e.g. 𝑆𝑛 (𝑥,𝑦), will
depend on the entries (𝑥𝑛, . . . , 𝑥0) and (𝑦𝑛, . . . , 𝑦0) instead of

https://leanprover-community.github.io/witt-vectors

Formalizing the Ring of Witt Vectors CPP ’21, January 18–19, 2021, Virtual, Denmark

only 𝑥𝑛 and 𝑦𝑛 . This is similar to “carrying” arithmetic: an
overflow at one index creates a ripple that can reach arbi-
trarily far to the left. It takes some machinery to establish
that these operations satisfy the axioms of a ring.

Second,W is functorial: every ring homomorphism 𝑓 : 𝑅 →
𝑆 induces a ring homomorphismW𝑓 : W𝑅 →W𝑆 obtained
by applying 𝑓 to all coefficients of 𝑥 . This procedure pre-
serves identity morphisms and compositions.
Third, we introduce the rings of truncated Witt vectors.

For a given natural number 𝑛, one may truncate Witt vectors
to their first 𝑛 coefficients, which is compatible with the ring
structure. We therefore obtain a ring structure onW𝑛𝑅 = 𝑅𝑛

and ring homomorphisms

W𝑅 →W𝑛𝑅, 𝑥 ↦→ (𝑥𝑛−1, . . . , 𝑥1, 𝑥0).

It is clear from this description that W𝑅 is the projective
limit of the rings W𝑛𝑅. We describe this in more detail in
Section 6.1.
Finally, for the purpose of this introduction, there are

several standard operations onWitt vectors which in fact are
natural transformations: that is, they behave in the expected
way with respect to the functoriality ofW.

• The Teichmüller lift is amultiplicative, zero-preserving
map

𝜏 : 𝑅 →W𝑅, 𝑟 ↦→ (. . . , 0, 0, 𝑟).

In the exampleW(Z/𝑝Z) � Z𝑝 , the elements 𝜏 (𝑟) ∈
Z𝑝 correspond to the (𝑝 − 1)th roots of unity in Z𝑝
that can be obtained from Z/𝑝Z via Hensel’s lemma
(together with 𝜏 (0) = 0).

• Verschiebung (“shift”) is an additive map

𝑉 : W𝑅 →W𝑅, 𝑥 ↦→ (. . . , 𝑥2, 𝑥1, 𝑥0, 0).

• Frobenius is a ring homomorphism

𝐹 : W𝑅 →W𝑅

that is defined for general rings 𝑅 in a somewhat con-
voluted way. Suffice it to say that if 𝑅 is a ring of char-
acteristic 𝑝 , then 𝑓 : 𝑅 → 𝑅, 𝑟 ↦→ 𝑟𝑝 is a ring homomor-
phism (also called Frobenius), and in this case 𝐹 =W𝑓 .

• Multiplication by 𝑛 is denoted

[𝑛] : W𝑅 →W𝑅, 𝑥 ↦→ 𝑛 · 𝑥,

and is an additive map.
These operations satisfy various identities that we discuss

in Section 5.2.

2.3 Universal Calculations
In the preceding section we have claimed various identities
of a ring-theoretic nature, for example that addition and
multiplication on the Witt vectors are commutative and as-
sociative, that the Teichmüller lifts are multiplicative, and
that Verschiebung is additive. Direct approaches to proving

these identities are bound to be messy, to the point that they
are futile.

We will now explain two strategies to approach the proofs
of these relations while containing the mess. From a high-
brow perspective, these strategies amount to the same thing,
but they are very different from the point of view of im-
plementation (both by hand and in Lean). We apply both
strategies in our formalization.
Before explaining these strategies, we lay some ground-

work that both have in common. For 𝑛 ∈ N, the 𝑛th Witt
polynomial is

𝑊𝑛 =

𝑛∑
𝑖=0

𝑝𝑖 · 𝑋𝑝𝑛−𝑖

𝑖
∈ Z[. . . , 𝑋1, 𝑋0] .

(The Witt polynomials play a role in defining 𝑆𝑖 and 𝑃𝑖 in
Eq. (2.2.1).) If 𝑥 = (. . . , 𝑥1, 𝑥0) ∈ W𝑅 is a Witt vector, then
𝑊𝑛 (𝑥) ∈ 𝑅 is called the 𝑛th ghost component of 𝑥 . By defini-
tion of the ring structure onW𝑅, this gives a ring homomor-
phism

𝑤𝑛 : W𝑅 → 𝑅, 𝑥 ↦→𝑊𝑛 (𝑥).
These ghost components assemble into a ring homomor-
phism called the ghost map

𝑤 : W𝑅 → 𝑅N, 𝑥 ↦→ (𝑤0 (𝑥),𝑤1 (𝑥), . . .),
where the ring structure on the codomain is given by point-
wise addition and multiplication. The ghost map is not in-
jective in general, but if 𝑝 is invertible in 𝑅, then it is an
isomorphism.

Strategy 1.
1. First prove the identity for rings 𝑅 in which 𝑝 is invert-

ible. Use the fact thatW𝑅 is isomorphic to 𝑅N via the
ghost map.

2. Then prove the identity for polynomial rings over the
integers: 𝑅 = Z[(𝑋𝑖)𝑖∈𝐼]. Use that these rings inject
into Q[(𝑋𝑖)𝑖∈𝐼], and apply the preceding point.

3. Finally, use the natural surjective ring homomorphism
Z[(𝑋𝑟)𝑟 ∈𝑅] → 𝑅, 𝑋𝑟 ↦→ 𝑟

to deduce the identity for arbitrary rings 𝑅.

Strategy 2 (sketch).
1. Ignore the fact that the ghost map is not injective in

general.
2. Apply the ghost map to both sides of the identity, and

prove that the resulting claim is true in 𝑅N.
Hazewinkel [14, p.14, footnote 14] writes of this strategy:

There are pitfalls in calculating with ghost com-
ponents as is done here. Such a calculation gives
a valid proof of an identity or something else
only if it is a universal calculation; that is, makes
no use of any properties beyond those that fol-
low from the axioms for a unital commutative
ring only.

CPP ’21, January 18–19, 2021, Virtual, Denmark Johan Commelin and Robert Y. Lewis

While Strategy 1 makes less of a mess than a naive ap-
proach, it still opens some boxes better left closed. Strat-
egy 2 is enticing, but it takes careful planning to make it
amenable to formalization. We discuss how we have done
this in Section 4.4, sidestepping the pitfalls that Hazewinkel
warns about. This strategy is a powerful method for formally
checking identities between the functions mentioned in Sec-
tion 2.2: with a simple Lean tactic for performing specific
rewrites, typical proofs take only two or three lines of code.

2.4 Witt Vectors over Z/𝑝Z
We mentioned in Section 2.2 that W(Z/𝑝Z) is isomorphic
to Z𝑝 . This isomorphism is constructed in the following
manner. The ring W(Z/𝑝Z) is the projective limit of the
rings of truncated Witt vectorsW𝑛 (Z/𝑝Z). Similarly, Z𝑝 is
the projective limit of the rings Z/𝑝𝑛Z. It therefore suffices to
construct isomorphismsW𝑛 (Z/𝑝Z) → Z/𝑝𝑛Z that commute
with the natural homomorphisms

W𝑛 (Z/𝑝Z) →W𝑚 (Z/𝑝Z) and Z/𝑝𝑛Z→ Z/𝑝𝑚Z

for all 𝑚 ≤ 𝑛. Since any two morphisms out of Z/𝑘Z are
always equal, this commutativity condition is vacuously sat-
isfied, and we are left with constructing the isomorphisms
W𝑛 (Z/𝑝Z) → Z/𝑝𝑛Z. Using the fact that Z/𝑝Z has charac-
teristic 𝑝 , one can show that

𝑝𝑖 = (. . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
𝑖 times

) ∈ W(Z/𝑝Z).

This means that for all 𝑖 < 𝑛 we find 𝑝𝑖 ≠ 0 inW𝑛 (Z/𝑝Z).
HenceW𝑛 (Z/𝑝Z) is a ring of characteristic 𝑝𝑛 that has cardi-
nality 𝑝𝑛 . It is therefore isomorphic to Z/𝑝𝑛Z. This completes
the proof thatW(Z/𝑝Z) is isomorphic to Z𝑝 .

2.5 Lean and mathlib
Our formalization is based on Lean’s community-driven
mathematical librarymathlib [21], and the work we describe
has been integrated into the library. We depend on numer-
ous modules in mathlib that have been enhanced by earlier
projects. In particular, Lewis’ construction of Z𝑝 [17] and
preliminaries from Buzzard, Commelin, and Massot [3] on
the theory of valuation rings serve as a solid foundation for
our work.

We rely heavily on the theory of multivariate polynomials,
to which many community members have contributed. The
type mv_polynomial 𝜎 R, where R is a commutative semir-
ing, represents polynomials with coefficients in R whose
variables are indexed by the type 𝜎 .

Lean’s core library andmathlib are designed around using
type classes [27, 29] to manage mathematical structure. Our
development takes this path as well. Structures in mathlib
usually follow a partially bundled approach, where, for exam-
ple, group G is a Type-valued predicate on a type G asserting
that G has a group structure. While the group operations and

𝑅

Z𝑝

Z/𝑝𝑛+1Z Z/𝑝𝑛Z

𝑓𝑛+1 𝑓𝑛

mod

Figure 2. Z𝑝 is the projective limit of Z/𝑝𝑛Z. Any family
of compatible morphisms 𝑓𝑛 : 𝑅 → Z/𝑝𝑛Z factors uniquely
through Z𝑝 .

their properties are bundled in the structure definition, the
carrier type G is not.

An exception to this rule is mathlib’s use of bundled mor-
phisms [21, Section 4.1.2]. The partially bundled approach
would suggest to define a type class is_ring_hom f asserting
that f : R → S satisfies the properties of a ring homomor-
phism. (The ring structures on R and S are provided by type
class arguments.) In practice, the issues with compositional-
ity introduced by this approach are worse than the problems
it solves. Instead, mathlib defines a structure ring_hom R S,
with notation R →+∗ S, that bundles a function R → Swith
proofs that it satisfies the ring homomorphism properties. A
coercion from R →+∗ S to R → S projecting out this func-
tion allows us to apply ring homomorphisms as if they were
native functions. At first glance this may seem to cut against
the grain of the type theory, since superficially we do not
work with native function types. In practice it works with-
out issue and behaves predictably in its interactions with
Lean’s type class inference and simplifier. We use the same
approach for ring isomorphisms R ≃+∗ S.

Some Lean code snippets in this paper have been slightly
edited for the sake of formatting. We fix parameters p : N
and R : Type throughout, assuming p is prime and R is a
commutative ring.

3 Algebra of Z𝑝
We begin with the mathlib development of the 𝑝-adic num-
bers described by Lewis [17]. This development defines Q𝑝

as the Cauchy completion of Q with respect to the 𝑝-adic
norm and Z𝑝 as the subring of elements with norm at most 1.
It establishes some basic algebraic facts about Z𝑝 , including
that it is a local ring with maximal ideal spanned by 𝑝 . Our
goal is to further develop the algebraic theory of Z𝑝 , culmi-
nating in a proof of its universal property (Fig. 2), that it is
the projective limit of the rings Z/𝑝𝑛Z.
We follow mathlib in using the notation Z_[p] for the

Lean type padic_int p.

Formalizing the Ring of Witt Vectors CPP ’21, January 18–19, 2021, Virtual, Denmark

3.1 Algebraic Instances
We first establish that Z𝑝 is a discrete valuation ring (DVR).
We will need to know something about the structure of the
ideals of Z𝑝 .

In the interest of developing a full API, we prove a number
of lemmas characterizing open unit balls. These are mostly
variants of the following:

lemma norm_le_pow_iff_mem_span_pow
(x : Z_[p]) (n : N) :
∥x∥ ≤ p ^ (-n : Z) ↔
x ∈ (ideal.span {p ^ n} : ideal Z_[p])

The notation (t : T) instructs Lean to elaborate t with
expected type T, inserting coercions if necessary. Ideals in
mathlib are not necessarily finitely generated; an ideal of 𝑅
is an 𝑅-submodule of 𝑅, with membership in an ideal defined
to be membership in the carrier set of the submodule.

In addition to lifting the 𝑝-adic norm fromQ toQ𝑝 and Z𝑝 ,
it is also useful to lift the 𝑝-adic valuation 𝜈𝑝 . This was done
by Buzzard, Commelin, and Massot [3] but not integrated
into mathlib. We integrate their work and provide variants
in terms of this valuation, e.g.

lemma mem_span_pow_iff_le_valuation
{x : Z_[p]} (hx : x ≠ 0) (n : N) :
x ∈ (ideal.span {p ^ n} : ideal Z_[p]) ↔
↑n ≤ x.valuation

Proving these results is straightforward. The norm_cast tac-
tic [18], developed to simplify expressions containing type
coercions, proved useful to handle the many embeddings
between N, Z, Q𝑝 , and Z𝑝 .
These various characterizations of the ideals of Z𝑝 and

the fact that 𝑝 is prime in Z𝑝 are sufficient to show that Z𝑝
is a DVR. Unfortunately DVRs provide an excellent example
of a familiar pitfall of formalization. Wikipedia provides 11
equivalent characterizations of a DVR, each one convenient
in certain contexts, but in a proof assistant we must choose
one as primary. We found that the existingmathlib definition
was not well suited to our application, and had to develop
an alternate characterization and prove it equivalent to the
existing criterion.

3.2 Universal Property
One can think of an element of Z𝑝 as a left-infinite base-𝑝
expansion of numerals. With this in mind, it is possible to
visualize a map from Z𝑝 to Z/𝑝𝑘Z for 𝑘 ∈ N: take the 𝑘

rightmost digits of the expansion. It is perhaps harder to see
how to define this on the analytic representation of Z𝑝 or
that this operation is a ring homomorphism.

We define this family of homomorphisms recursively, first
handling the 𝑘 = 1 case and then using this in the general
case. The definitions are similar, so we factor out a common
constructor: to produce a ring homomorphism Z_[p] →+∗

zmod k, it suffices to give f : Z_[p] → N satisfying certain

properties. Here, zmod k is the mathlib representation of
Z/𝑘Z, the ring of integers modulo k.
def to_zmod_hom (k : N) (f : Z_[p] → N)
(f_spec : ∀ x,
x - f x ∈ (ideal.span {k} : ideal Z_[p]))

(f_congr : ∀ (x : Z_[p]) (a b : N),
x - a ∈ (ideal.span {k} : ideal Z_[p]) →
x - b ∈ (ideal.span {k} : ideal Z_[p]) →
(a : zmod k) = b) :

Z_[p] →+∗ zmod k

Suppose 𝑟 ∈ Q with ∥𝑟 ∥𝑝 ≤ 1. There is a unique integer
0 ≤ 𝑚(𝑝, 𝑟) < 𝑝 such that ∥𝑟 −𝑚(𝑝, 𝑟)∥𝑝 < 1. Using that Q
is densely embedded in Q𝑝 , we can transfer this property
from Q to Q𝑝 , and rephrase using results from Section 3.1 as
follows:
lemma exists_mem_range (x : Z_[p]) :
∃ n : N, n < p ∧ (x - n ∈ maximal_ideal Z_[p])

The function zmod_repr : Z_[p] → N projects out this
value n. By construction, it satisfies the f_spec requirement
of to_zmod_hom, and after a little more work to establish
f_congr we can define to_zmod : Z_[p] →+∗ zmod p.
For the general case, we must define a family of func-

tions appr : Z_[p] → N → N such that appr x n satis-
fies f_spec x and f_congr x for k = p^n. These are effec-
tively the “𝑛 rightmost digits” functions mentioned above,
approximating x to n places.

The key to defining appr x is to note that, for 𝑥 ≠ 0, there
is a unique unit element 𝑢 ∈ Z𝑝 such that 𝑥 = 𝑢 · 𝑝 |𝜈𝑝 (𝑥) | . We
call this element unit_coeff x. We then define appr x n by
recursion on n : N.
def appr : Z_[p] → N → N
| x 0 := 0
| x (n+1) :=
let y := x - appr x n in
if hy : y = 0 then appr x n
else let u := unit_coeff hy,

v := |y.valuation - n|,
d := to_zmod (u ∗ (p ^ v)) in

appr x n + p ^ n ∗ d.val

In the recursive case, we take y to be the error in the pre-
vious approximation, and apply to_zmod to a product of
unit_coeff y. This is the (𝑛 + 1)th rightmost digit of our
expansion, so we can scale it and add it to the previous ap-
proximation. After proving the specification and congruence
properties of appr, we again use to_zmod_hom to define:
to_zmod_pow (n : N) : Z_[p] →+∗ zmod (p ^ n)

The construction of appr may sound like a complicated
way to define a function with an intuitively simple descrip-
tion, and indeed it takes some work to establish f_spec and
f_congr. It would be drastically simplified if we began with
an algebraic definition of Z𝑝 instead of the analytic one.
However, the complexity might resurface in other places.

CPP ’21, January 18–19, 2021, Virtual, Denmark Johan Commelin and Robert Y. Lewis

These analytic results are on display in the final step of
this section, when we show that Z𝑝 is the projective limit
of Z/𝑝𝑛Z. For a fixed ring 𝑅, we work with a family of ring
homomorphisms 𝑓𝑘 : 𝑅 → Z/𝑝𝑘Z which we assume to be
compatible: for any 𝑟 and 𝑘1 ≤ 𝑘2, 𝑓𝑘1 (𝑟) ≡ 𝑓𝑘2 (𝑟) mod 𝑝𝑘1 .
For any 𝑟 , the sequence 𝑛 ↦→ 𝑓𝑛 (𝑟) ∈ Z is Cauchy in the 𝑝-
adic norm, and thus converges in Z𝑝 . Calculations establish
that this map 𝑅 → Z𝑝 is a ring homomorphism, so we can
define:
def lift (f : Π (k : N), R →+∗ zmod (p ^ k))
(f_compat : ∀ k1 k2 (hk : k1 ≤ k2),
(zmod.cast_hom (pow_dvd_pow p hk)).comp (f k2)
= f k1) :

R →+∗ Z_[p]

We finally show that lift is the unique function satisfying
the commutative diagram in Fig. 2, establishing the universal
property of Z𝑝 as the projective limit of Z/𝑝𝑛Z.
This result will be essential in Section 6. There, we will

prove thatW(Z/𝑝Z) satisfies the same universal property,
and conclude that the two rings are isomorphic. In the mean-
time we face the substantial task of definingW and its ring
structure.

4 Witt Polynomials and Vectors
We can now continue to work toward the definition ofW.
While the bare definition is very easy to state, we will need
some machinery to define its ring structure, so we develop
that machinery first.

4.1 Monadic Approach to Polynomials
Key to simplifying statements in the realm of universal cal-
culations is the monadic bind operation on the type of poly-
nomials. We often need to evaluate polynomials on other
polynomials, and defining it (together with a good collection
of simplification lemmas) made many calculations straight-
forward.
Given f : 𝜎 → mv_polynomial 𝜏 R, we define an alge-

bra homomorphism

bind1 f :
mv_polynomial 𝜎 R →𝑎[R] mv_polynomial 𝜏 R

that evaluates a polynomial in variables of type 𝜎 by sending
each variable to its image under f. The subscript 1 distin-
guishes this from an analogous operation that acts on the
coefficient ring instead of the variables, but we do not use
bind2 in our current development.
The bind1 operator appears in many of our definitions

and specifications, and interacts naturally with the various
Witt vector operations. We register these interactions as
simplification lemmas, meaning that Lean’s simp tactic will
by default use them to rewrite. One can think of bind1 as an
atom in the universal language of rings: when calculating,
the definition bind1 should never be unfolded, and once other

definitions are unfolded to the bind1 level the simplifier can
often finish the calculation.

Note that in the informal notation, this operation is trans-
parent, and hence the calculations, involving say associa-
tivity of bind1 and renaming of variables, don’t need to be
performed either. For our informal presentation here we will
denote the function bind1 f by bind𝑓 .
The bind operator does indeed induce a lawful monad

structure on mv_polynomial. Its corresponding pure opera-
tor is the polynomial variable operator
X : 𝜎 → mv_polynomial 𝜎 R

which lifts a term of the variable index type 𝜎 to a polynomial.
Its map operator, rename, reindexes the variables via a map
𝜎 → 𝜏 .

4.2 Witt Polynomials and Structure Polynomials
We can now define the Witt polynomials, which we will use
to describe the ring structure onW𝑅. Recall that for 𝑛 ∈ N,
the 𝑛th Witt polynomial is

𝑊𝑛 =

𝑛∑
𝑖=0

𝑝𝑖 · 𝑋𝑝𝑛−𝑖

𝑖
∈ Z[. . . , 𝑋1, 𝑋0] . (4.2.1)

Their Lean definition is a direct translation of Eq. (4.2.1):
def witt_polynomial (n : N) : mv_polynomial N R :=
Σ i in range (n+1),
monomial (single i (p ^ (n - i))) (p ^ i)

We use the notation W_ R n for this type.
It is not so hard to see that over the rationals, but not the

integers, the polynomials𝑊𝑛 form an alternative basis of
the polynomial algebra Q[. . . , 𝑋1, 𝑋0], so that by abuse of
notation we may write

Q[. . . ,𝑊1,𝑊0] � Q[. . . , 𝑋1, 𝑋0] .
In Lean, we define polynomials X_in_terms_of_W p R n that
correspond to X n viewed on the basis of Witt polynomials.
In other words, applying bind1 (W_ R) to the polynomial
X_in_terms_of_W p R n produces X n, and similarly if we
swap the polynomials. This fact is key to establishing the
algebra automorphism that makes it easy to prove the fol-
lowing lemma. For reasons of exposition, we only treat the
case where Φ is a polynomial in two variables, but apart from
notational complexity the case of an arbitrary (even infinite)
number of variables is not different at all.

Lemma 4.2.2. Let Φ ∈ Q[𝑋,𝑌] be a polynomial. Then there
exists a unique sequence of polynomials

𝜑𝑛 ∈ Q[. . . , 𝑋1, 𝑋0, . . . 𝑌1, 𝑌0], (𝑛 ∈ N)
such that for all natural numbers 𝑛

𝑊𝑛 (. . . 𝜑1, 𝜑0) = Φ(𝑊𝑛,𝑊𝑛).

The monadic bind1 makes another appearance in the for-
mal statement of this lemma:

Formalizing the Ring of Witt Vectors CPP ’21, January 18–19, 2021, Virtual, Denmark

theorem witt_structure_rat_exists_unique
(Φ : mv_polynomial idx Q) :
∃! (𝜑 : N → mv_polynomial (idx × N) Q),
∀ (n : N), bind1 𝜑 (W_ Q n) =

bind1 (λ i, (rename (prod.mk i) (W_ Q n))) Φ

A non-trivial calculation shows that if Φ has integral co-
efficients, then so do the 𝜑𝑛 . Thus we get the following key
theorem, on which the whole theory of Witt vectors relies.

Theorem4.2.3. LetΦ ∈ Z[𝑋,𝑌] be a polynomial. Then there
exists a unique sequence of polynomials

𝜑𝑛 ∈ Z[. . . , 𝑋1, 𝑋0, . . . 𝑌1, 𝑌0], (𝑛 ∈ N)

such that for all natural numbers 𝑛

𝑊𝑛 (. . . 𝜑1, 𝜑0) = Φ(𝑊𝑛,𝑊𝑛).

The details of implementing this non-trivial calculation are
not pleasant, involving arguments about the badly behaved
numerator and denominator functions. This is indeed one
of the few points at which we step outside the language of
rings. The key ingredient in the proof is the following basic
but non-trivial number-theoretic fact.
lemma dvd_sub_pow_of_dvd_sub {p : N} {a b : R}
(h : (p : R) | a - b) (k : N) :
(p^(k+1) : R) | a^(p^k) - b^(p^k)

Coq’s Mathematical Components library [20] provides an
interface for manipulating polynomials whose coefficients
lie in a subring of a base ring. There is no analogous interface
for mathlib’s multivariate polynomials, but in retrospect, it
seems likely that this approach, with base ringQ and subring
Z, may have helped here.
The sequences of polynomials 𝑆𝑛 and 𝑃𝑛 that occur in

the definition (Eq. (2.2.1)) of the addition and multiplication
on W𝑅 will be obtained by applying this theorem to the
polynomials 𝑋 + 𝑌 and 𝑋 · 𝑌 respectively. We explain in
Section 5.1 why these operations satisfy the axioms of a
commutative ring.

4.3 The Type of 𝑝-Typical Witt Vectors
After Section 4.4, we will have all the necessary machinery
to define a ring structure and operations onW𝑅. Before that,
though, we must specify what a Witt vector actually is.

This part of the definition is fortunately easy. As indicated
in Section 2.2, a Witt vector over 𝑅 is an infinite stream of
coefficients in 𝑅,

(. . . , 𝑥𝑖 , . . . , 𝑥2, 𝑥1, 𝑥0), 𝑥𝑖 ∈ 𝑅.

This leads to perhaps the simplest definition in our formal-
ization:
def witt_vector (p : N) (R : Type∗) := N → R

The argument p is not used in the definition, but witt_vector
p R will have a different ring structure for each p.

4.4 Universal Calculations
In Section 2.3, we sketched a strategy for proving identities
between operators on the ring of Witt vectors. This strategy
was imprecise, and as Hazewinkel wrote, it only gives a valid
proof if it is a “universal calculation; that is, makes no use of
any properties beyond those that follow from the axioms for
a unital commutative ring only.”

In the remainder of this paper, we will use the term “uni-
versal calculation” in the following precise way: it is a calcu-
lation with polynomial functions on the ring of Witt vectors.
Let us now explain what we mean by a polynomial function.
Many of the operations onW𝑅 that we will study have

a polynomial structure to them. Let 𝑓𝑅 : W𝑅 → W𝑅 be a
family of functions where 𝑅 ranges over all commutative
rings. In practice, this family is defined by parametrizing
over 𝑅, so we refer to it as 𝑓 . We say that 𝑓 is a polynomial
function if there is a family of polynomials𝜑𝑛 ∈ Z[𝑋0, 𝑋1, . . .]
such that for every commutative ring 𝑅 and each 𝑛 ∈ N and
𝑥 = (. . . 𝑥1, 𝑥0) ∈ W𝑅,

𝑓𝑅 (𝑥)𝑛 = 𝜑𝑛 (𝑥0, 𝑥1, . . .).
We formalize this as a predicate on the family of functions

𝑓𝑅 .
def is_poly
(f : Π {R : Type} [comm_ring R], W R → W R) :
Prop :=

∃ 𝜑 : N → mv_polynomial N Z,
∀ {R : Type} [comm_ring R] (x : W R),

(f x).coeff = λ n, aeval x.coeff (𝜑 n)

The square brackets around comm_ring R denote that this
is a type class argument. The function aeval evaluates a
multivariate polynomial given values for the variables in an
algebra over the coefficient ring.

The power of this predicate comes from its extensionality
principle, a corollary of Theorem 4.2.3.

Lemma 4.4.1. Let 𝑓 , 𝑔 :W𝑅 →W𝑅 be polynomial functions,
witnessed respectively by families of polynomials 𝜑𝑛,𝜓𝑛 ∈
Z[. . . , 𝑋1, 𝑋0]. If for all 𝑛 ∈ N we have

𝑊𝑛 (. . . , 𝜑1, 𝜑0) =𝑊𝑛 (. . . ,𝜓1,𝜓0),
then 𝜑𝑛 = 𝜓𝑛 for all 𝑛 ∈ N, and hence 𝑓 = 𝑔.

In other words, two polynomial functions 𝑓 and𝑔 are equal
when we obtain identical values when evaluating the Witt
polynomials on their underlying polynomials. The condition

𝑊𝑛 (. . . , 𝜑1, 𝜑0) =𝑊𝑛 (. . . ,𝜓1,𝜓0)
can be written equivalently as

bind𝜑 (𝑊𝑛) = bind𝜓 (𝑊𝑛). (4.4.2)
This is an equality of polynomials with coefficients in Z, and
as such it holds exactly when

bind𝜑 (𝑊𝑛) (𝑥0, 𝑥1, . . .) = bind𝜓 (𝑊𝑛) (𝑥0, 𝑥1, . . .)
for every sequence of integers 𝑥𝑖 , 𝑖 ∈ N.

CPP ’21, January 18–19, 2021, Virtual, Denmark Johan Commelin and Robert Y. Lewis

Note that bind𝜑 (𝑊𝑛) (𝑥0, 𝑥1, . . .) is equal to
𝑊𝑛 (. . . , 𝜑1 (𝑥0, 𝑥1, . . .), 𝜑0 (𝑥0, 𝑥1, . . .)),

and by assumption
𝜑𝑖 (𝑥0, 𝑥1, . . .) = 𝑓 (𝑥)𝑖 .

Additionally, recall the 𝑛th ghost component (Section 2.3):
𝑤𝑛 : W𝑅 → 𝑅, 𝑥 ↦→𝑊𝑛 (𝑥).

Putting all these pieces together, we see that Eq. (4.4.2) is
equivalent to

∀𝑥 ∈ WZ, 𝑛 ∈ N, 𝑤𝑛 (𝑓 (𝑥)) = 𝑤𝑛 (𝑔(𝑥)) .
Proving this for all 𝑥 ∈ W𝑅 for a generic ring 𝑅 is never

harder than proving it for 𝑥 ∈ WZ, and the former clearly
implies the latter. The Lean statement of this extensionality
principle emphasizes that the condition reduces the calcula-
tion to one over generic rings.
lemma is_poly.ext
{f g : Π {R} [comm_ring R], W R → W R}
(hf : is_poly p f) (hg : is_poly p g)
(heq : ∀ {R} [comm_ring R] (x : W R) (n : N),
ghost_component n (f x) =
ghost_component n (g x)) :

∀ {R} [comm_ring R] (x : W R), f x = g x

What we have just described is, in fact, the precise ver-
sion of the second strategy for proving identities between
functions on Witt vectors that we sketch in Section 2.3. The
restricted language that our technique targets is that of uni-
tal commutative rings and morphisms between them. Essen-
tially, the calculations we carry out in this language may not
depend on features of the specific rings in question: they may
not assume that 𝑝 is invertible, that the rings have certain
characteristic, or anything of the sort.

We can thus rephrase our strategy from before:

Strategy 2.
• Show that both sides of the identity are given by N-
indexed families of polynomial operations on the coef-
ficients of Witt vectors.

• Show that these polynomial operations are equal.
• Use Lemma 4.4.1 to reduce this to a computation on
ghost components.

Because the ghost component computations invoke only
a restricted language, they tend to be pleasant to carry out,
and are typically provable by the simplifier with little or no
extra input. For example, we apply our strategy to check the
relation 𝐹 ◦𝑉 = [𝑝]. The proof in Lean, when we provide
the polynomial structure by hand, is approximately:
lemma frobenius_verschiebung (x : W R) :
frobenius (verschiebung x) = x ∗ p :=

is_poly.ext
((frobenius_is_poly p).comp verschiebung_is_poly)
(mul_n_is_poly p p)
(by ghost_simp) _ _

The tactic ghost_simp does little besides invoke the simpli-
fier with a custom set of lemmas, proving the goal:

∀ (n : N),
⇑(ghost_component n)
⇑(frobenius ⇑(verschiebung x)) =

⇑(ghost_component n) (x ∗ ↑p)

We write “approximately” because, in fact, the first argu-
ment to is_poly.ext can be found automatically as well.
We discuss this in Section 5.3.

The notion of a polynomial functionW𝑅 →W𝑅 extends,
in an obvious way, to functions (W𝑅)𝑛 →W𝑅 of any arity.
Addition and multiplication of Witt vectors, for instance,
are polynomial by definition. Defining binary versions of
the predicate, extensionality lemma, and composition rules
further increase the opportunities to use this strategy.

Strategy 2 is powerful and straightforward. The downside
is that it is hard to turn the principle into a fully generic and
flexible machine. One limitation appears when we consider
𝜏 (Teichmüller), a function 𝑅 →W𝑅, which doesn’t fit in the
framework of 𝑛-ary functions from W𝑅 to itself. The lack
of a convenient library in mathlib for the composition of
𝑛-ary functions prevents us from using an is_poly predicate
on functions of arbitrary arity. For our current applications,
this is no great barrier. We are able to use Strategy 1 to
work around these restrictions when needed. In the future,
it would be interesting to extend our technique to make this
strategy more widely applicable.

5 Ring Structure and Other Operations
Our task now is to define the ring structure onW𝑅 and the
Teichmüller, Verschiebung, Frobenius, and multiplication-
by-𝑛 operations. The Teichmüller operator will not make an
appearance in Section 6, but we include it in the interest of
establishing a general interface for Witt vectors in mathlib.

Our proofs proceed, as much as possible, as universal cal-
culations. Following Strategy 2 as explained in the previous
section allows many proofs to use essentially the same argu-
ments, for instance, when we establish the homomorphism
properties of the operators. These arguments are similar
enough that we were able to factor them into short metapro-
grams, only slightly more complicated than tactic macros,
that can replicate them with minimal user input.

5.1 The Ring of Witt Vectors
In Section 2.2 we defined, for Witt vectors 𝑥 = (. . . , 𝑥1, 𝑥0)
and 𝑦 = (. . . , 𝑦1, 𝑦0) inW𝑅,

𝑥 + 𝑦 = (. . . , 𝑆𝑖 (𝑥,𝑦), . . . , 𝑆1 (𝑥,𝑦), 𝑆0 (𝑥,𝑦))
𝑥 · 𝑦 = (. . . , 𝑃𝑖 (𝑥,𝑦), . . . , 𝑃1 (𝑥,𝑦), 𝑃0 (𝑥,𝑦))

for then-unspecified families of polynomials 𝑆𝑖 and 𝑃𝑖 . We
obtain these families, which we call structure polynomials, by
applying Theorem 4.2.3 to the bivariate polynomials 𝑋 + 𝑌

Formalizing the Ring of Witt Vectors CPP ’21, January 18–19, 2021, Virtual, Denmark

and 𝑋 ·𝑌 . The structure polynomial for negation is obtained
in the same way using the univariate polynomial −𝑋 .
In Lean, the unique family of polynomials from Theo-

rem 4.2.3 goes by the name witt_structure_int. We define:
def witt_add :
N → mv_polynomial (fin 2 × N) Z :=

witt_structure_int p (X 0 + X 1)

def witt_mul :
N → mv_polynomial (fin 2 × N) Z :=

witt_structure_int p (X 0 ∗ X 1)

def witt_neg :
N → mv_polynomial (fin 1 × N) Z :=

witt_structure_int p (-X 0)

The addition onW𝑅 is then defined by letting the 𝑛th co-
efficient be the evaluation of witt_add n on the coefficients
of 𝑥,𝑦 ∈ W𝑅. Multiplication, negation, and the elements 0
and 1 are defined similarly.
def eval {k : N}
(𝜑 : N → mv_polynomial (fin k × N) Z)
(x : fin k → W R) : W R :=

mk p (λ n, peval (𝜑 n) $ λ i, (x i).coeff)

instance : has_add (W R) :=
⟨λ x y, eval (witt_add p) ![x, y]⟩

The function peval is simply an uncurried application of
aeval. The notation ![x, y] stands for the function of type
fin 2 → W R mapping 0 to x and 1 to y.
To show that these definitions makeW𝑅 into a commu-

tative ring, we must check that they satisfy a number of
axioms. Doing this explicitly would be tedious. We therefore
follow Strategy 1, as explained in Section 2.3.
Suppose that 𝑓 : 𝑅 → 𝑆 is a function, both 𝑅 and 𝑆 are

endowed with 0, 1, +, ·, and −, and the function 𝑓 preserves
this structure. If 𝑓 is injective, and 𝑆 satisfies the axioms
of a commutative ring, then so does 𝑅. In Lean this fact is
recorded in function.injective.comm_ring. Dually, if 𝑓 is
surjective, and 𝑅 satisfies the axioms of a commutative ring,
then so does 𝑆 . This is function.surjective.comm_ring.
For every ring homomorphism 𝑓 : 𝑅 → 𝑆 , the map

W𝑓 : W𝑅 →W𝑆, (. . . , 𝑥1, 𝑥0) ↦→ (. . . , 𝑓 (𝑥1), 𝑓 (𝑥0))

preserves the ring operations. We prove this in five lemmas,
one lemma for each of 0, 1, +, ·, and −. These goals are
uniform enough that all can be proved by the same five line
tactic script, which we factor into a tactic macro. This is not
the only place we encounter repetitive goals like this, and
we elaborate on the use of auxiliary tactics in Section 5.3.

We can then argue as follows thatW𝑅 is a commutative
ring:

• Recall from Section 2.3 the ring homomorphism

𝑤 : W𝑅 → 𝑅N, 𝑥 ↦→ (𝑊0 (𝑥),𝑊1 (𝑥), . . .),

called the ghost map. If 𝑝 is invertible in 𝑅, then the
ghost map is injective. So in this caseW𝑅 is a commu-
tative ring.

• If 𝑅 = Z[(𝑋𝑖)𝑖∈𝐼] is some polynomial algebra over the
integers, then we use the natural injection

W(Z[(𝑋𝑖)𝑖∈𝐼]) →W(Q[(𝑋𝑖)𝑖∈𝐼])
and the fact that it preserves the ring operations, as
discussed above. Since 𝑝 is invertible in Q[(𝑋𝑖)𝑖∈𝐼],
we deduce thatW(Z[(𝑋𝑖)𝑖∈𝐼]) is a commutative ring
from function.injective.comm_ring and the previ-
ous point.

• Finally, for arbitrary commutative rings 𝑅, consider
the mapW𝑓 , where 𝑓 is the natural surjection

𝑓 : Z[(𝑋𝑟)𝑟 ∈𝑅] → 𝑅.

Since 𝑓 is surjective, so isW𝑓 , and we can therefore
conclude thatW𝑅 is a commutative ring from the fact
thatW(Z[(𝑋𝑟)𝑟 ∈𝑅]) is a commutative ring.

We have used Strategy 1, as opposed to Strategy 2 which
was explained in Section 4.4, for two reasons.

(i) With our current approach we deduce all the axioms
at once, whereas with Strategy 2 we would have to
check them one by one.

(ii) The associativity axioms refer to ternary operations,
and we have only formalized the machinery of Strat-
egy 2 in the unary and binary setting. So far, we haven’t
found a direct use for higher arity versions besides the
associativity axioms, and without a convenient way
to uniformly handle 𝑛-ary versions, it was not worth
the effort to develop ternary machinery for this single
application.

5.2 Operators
In Section 2.2 we introduced the four operators Verschiebung
(𝑉), Frobenius (𝐹), scalar multiplication ([𝑛]), and Teich-
müller (𝜏). For 𝑥,𝑦 ∈ W𝑅, these operations satisfy

𝐹 ◦𝑉 = [𝑝]
𝑉 (𝑥 · 𝐹 (𝑦)) = 𝑉 (𝑥) · 𝑦

and if 𝑅 has characteristic 𝑝

𝐹 (𝑥) = (. . . , 𝑥𝑝2 , 𝑥
𝑝

1 , 𝑥
𝑝

0)
[𝑝] (𝑥) = (. . . , 𝑥𝑝2 , 𝑥

𝑝

1 , 𝑥
𝑝

0 , 0)
𝑉 ◦ 𝐹 = [𝑝]

𝑝 = (. . . , 0, 0, 1, 0).
We will need most of these operations and properties in Sec-
tion 6.2, although the Teichmüller lift is included only for the
sake of completeness. Teichmüller also distinguishes itself
as the one operator whose properties we cannot establish
via Strategy 2. We will show that each of the others is a
polynomial function.

CPP ’21, January 18–19, 2021, Virtual, Denmark Johan Commelin and Robert Y. Lewis

Verschiebung. The definition of the Verschiebung map,

𝑉 : W𝑅 →W𝑅, (. . . , 𝑥2, 𝑥1, 𝑥0) ↦→ (. . . , 𝑥2, 𝑥1, 𝑥0, 0),

translates easily to Lean:
def verschiebung_fun (x : W R) : W R :=
mk p (λ n, if n = 0 then 0 else x.coeff (n - 1))

Its underlying polynomial structure is similarly straightfor-
ward:
def versch_poly (n : N) : mv_polynomial N Z :=
if n = 0 then 0 else X (n-1)

One lemma, an identity for bind𝑉 (𝑊𝑛), is somewhat tedious.
Otherwise, it is routine to show that 𝑉 is indeed a polyno-
mial function, respects addition, is a natural transformation,
interacts with the ghost components.

Multiplication by 𝑛. For any 𝑛 ∈ N, multiplication by 𝑛
in the ring of Witt vectors

[𝑛] : W𝑅 →W𝑅, 𝑥 ↦→ 𝑛 · 𝑥

is a polynomial function, because it is repeatedly applied ad-
dition, which is polynomial. The operation needs no defini-
tion in Lean since the coercionN → W R andmultiplication
onW R are known: it is simply λ x, x ∗ n.

Frobenius. The next operator puts up more of a fight. If
𝑅 is a ring of characteristic 𝑝 , then 𝑓 : 𝑅 → 𝑅, 𝑟 ↦→ 𝑟𝑝 is a
ring endomorphism. We use this to obtain an endomorphism
W𝑓 : W𝑅 →W𝑅, taking the image of each input coefficient
under 𝑓 (Section 5.1).
We claim that W𝑓 is a polynomial function, which un-

locks the toolkit of universal calculations, as described in
Section 4.4. In addition, we can use those polynomials to de-
fine an endomorphism 𝐹 : W𝑅 →W𝑅 for arbitrary rings 𝑅
that agrees withW𝑓 in the case that 𝑅 has characteristic 𝑝 .
Unfortunately we cannot use themachinery of Theorem 4.2.3
(witt_structure_int in Lean) to derive these polynomials.
It holds that

bind𝐹 (𝑊𝑛) =𝑊𝑛+1,

but to apply Theorem 4.2.3, we need this to be a polynomial
expression in𝑊0, . . . ,𝑊𝑛 . Since𝑊𝑛+1 contains the variable
𝑋𝑛+1 it cannot be expressed in terms of the earlier Witt poly-
nomials.

This is a very painful off-by-one error. Without being able
to use the witt_structure_int machinery, we are forced to
define the underlying polynomial structure by hand. The
proof that it witnesses that 𝐹 is a polynomial functionmimics
the argument lifting Lemma 4.2.2 (over Q) to Theorem 4.2.3
(over Z). While the high level approach is similar, the details
are different enough that it is not clear how to unify the
calculations.
After establishing that 𝐹 is polynomial, though, we are

back in the realm of universal calculations. Further prop-
erties of 𝐹 follow without excess trouble: for instance, if

𝑥 = (. . . 𝑥1, 𝑥0) ∈ W𝑅 and 𝑅 has characteristic 𝑝 , then
(𝐹 (𝑥))𝑛 = 𝑥

𝑝
𝑛

so that 𝐹 agrees withW𝑓 as promised.

Teichmüller. The signature of the Teichmüller lift 𝜏 is
not the same as the previous operators, which means we
can neither construct it as a polynomial function nor reason
with universal calculations. Fortunately, its definition

𝜏 : 𝑅 →W𝑅, 𝑟 ↦→ (. . . , 0, 0, 𝑟)
is easy to translate directly.
def teichmuller_fun (r : R) : W R
| 0 := r
| (n+1) := 0

After establishing that the 𝑛th ghost component of 𝜏 (𝑟) is
𝑟𝑝

𝑛 , it is straightforward to show that 𝜏 is multiplicative and
zero-preserving.

While 𝜏 is not needed in Section 6, it is an essential part of
the Witt vector interface, and so we define it for the sake of
completeness. It is a multiplicative map inverse to the ring
homomorphism

𝑤0 : W𝑅 → 𝑅, (. . . , 𝑥1, 𝑥0) ↦→ 𝑥0 .

In Section 6.1 we will see a universal property ofW, namely,
that it is the projective limit of the rings of truncated Witt
vectors. This shows how to build a ring homomorphism into
W𝑅. Another universal property ofW shows that to build a
ring homomorphism out of W𝑘 , when 𝑘 is a perfect ring, it
suffices to give suitable values at the Teichmüller represen-
tatives. We have not formalized this universal property.

5.3 Auxiliary Tactics
An appealing feature of Lean as a proof assistant is the easy
accessibility of its metaprogramming framework [8]. Lean
metaprograms are written in an extension of the language
of Lean itself. With very little syntactic overhead, these
metaprograms can implement tactics ranging from straight-
forward macros to procedures that interact with the parser
and environment in complex ways.
Our adherence to universal calculations leads to a num-

ber of proofs that are identical modulo a few key lemmas
or parameters. A typical example of this is in the previous
section, when we show that the ghost maps respect the ring
operations. The creative step of these proofs is to provide an
input polynomial and the correct arguments for use by the
Witt structure polynomials; otherwise, the proofs proceed
by predictable rewriting.
These predictable proofs fall just outside the scope of a

tactic macro, but can be handled easily by a metaprogram
that parses and inserts arguments. In the case of the ghost
map morphism properties, a metaprogram that proves all
four cases is only a few lines longer than a direct proof of
one case. We use this approach a number of times while
constructing the ring structure onW𝑅. These metaprograms

Formalizing the Ring of Witt Vectors CPP ’21, January 18–19, 2021, Virtual, Denmark

are only used locally, but let us avoid code duplication and
highlight the universality of the proof approach.

We are in an even better position now that the ring struc-
ture onW𝑅 has been established. A custom set of simplifier
lemmas, containing the proper universal ghost component
equations, ring homomorphism rules, and some other glue, is
able to handle the “predictable rewriting” step across a vari-
ety of different applications, in particular when we establish
identities between 𝑉 , 𝐹 , and [𝑛]. The proofs of an identity
𝐿 = 𝑅 typically takes two steps: we first use Lemma 4.4.1
to reduce the proof to a calculation with ghost components,
which then follows by predictable rewriting.

The first part appears to need some user input, since
Lemma 4.4.1 asks for proofs that 𝐿 and 𝑅 are polynomial.
But, in fact, these proofs follow predictable patterns as well.
𝐿 and 𝑅 are almost always compositions of atomic functions
that we show to be polynomial at the point of definition.
Establishing that 𝐿 and 𝑅 are polynomial amounts to unpack-
ing the functions’ structures and assembling the appropriate
compositionality lemmas in the right order.
This has distinct echoes of the search performed by type

class inference. The is_poly predicate does indeed behave
much like a type class. However, the somewhat complicated
forms of composition (unary with binary, binary with two
unary, diagonalization) lead to overly difficult higher order
unification problems in type class inference. We solve this
by avoiding generic compositional type class instances and
instead using a metaprogram to generate specific composi-
tional instances for each atomic function. When we establish
is_poly frobenius, for example, we automatically create
two instances:
Π (f : W R → W R) [is_poly f],
is_poly (λ x, frobenius (f x))

Π (f : W R → W R → W R) [is_poly2 f],
is_poly2 (λ x y, frobenius (f x y))

The creation of these instances is triggered by applying an
attribute to the proof of is_poly frobenius:
@[is_poly]
lemma frobenius_is_poly : is_poly frobenius := . . .

The predicate is_poly2 is a binary version of is_poly. Simi-
lar instances are made for binary polynomial functions.
We define a small tactic ghost_calc that, when facing a

goal 𝐿 = 𝑅, applies the appropriate extensionality lemma
and triggers type class inference to infer the polynomial
structure of each side. With this technique, the user never
sees that is_poly is a type class. The relevant instances are
generated under the hood and applied by ghost_calc.
Returning to the example in Section 4.4, we can now in-

spect the real proof of the identity 𝐹 ◦𝑉 = [𝑝]:
lemma frobenius_verschiebung (x : W R) :
frobenius (verschiebung x) = x ∗ p :=

by { ghost_calc x, ghost_simp }

The call to ghost_calc infers the polynomial structure of
each side and applies the (univariate) extensionality lemma.
Applying this lemma changes the goal from an identity in
W R to one in Witt vectors over a universally quantified
ring; the ring R and vector x no longer appear in the goal.
The ghost_calc tactic clears these obsolete variables and
introduces new ones with the same names. In the goal after
ghost_calc, we perceive an illusion that the ring has not
changed:
p : N
hp : fact (nat.prime p)
R : Type u_1
R._inst : comm_ring R
x : witt_vector p R
⊢ ∀ (n : N),

⇑(ghost_component n)
⇑(frobenius ⇑(verschiebung x)) =

⇑(ghost_component n) (x ∗ ↑p)

As before, the ghost_simp set of simplification lemmas is
able to close the remaining goal. This same proof pattern
establishes most of the identities from the previous section,
with minimal or no user input between ghost_calc and
ghost_simp.

6 Isomorphism with Z𝑝
So far we have worked with Witt vectors over an arbitrary
ring 𝑅. As discussed in Section 2.4, when we specialize 𝑅
to Z/𝑝Z, we get a ring isomorphic to Z𝑝 . We show this by
proving thatW(Z/𝑝Z) satisfies the same universal property
that we established for Z𝑝 in Section 3.2.

6.1 Truncated Witt Vectors
Just as we approximated elements of Z𝑝 by truncating all but
the rightmost 𝑛 digits, so we will truncate Witt vectors to
their first 𝑛 elements. We define the truncated Witt vectors
W𝑛𝑅 to be an 𝑛-element vector of elements of 𝑅:
def truncated_witt_vector
(p : N) (n : N) (R : Type∗) : Type :=

fin n → R

The parameter p : N is unused in this definition but will
determine the ring structure on this type. There is a clear
mapW𝑅 →W𝑛𝑅, and a map in the other direction appends
a stream of 0s to the end of a truncated vector. Using these
maps, we can lift the ring operations on W𝑅 to W𝑛𝑅. An
auxiliary tactic as described in Section 5.3 establishes that
the truncating map respects the ring operations, and since
this map is surjective, we can conclude thatW𝑛𝑅 is a ring
and the truncating map is a ring homomorphism.
There is another obvious truncation mapW𝑛𝑅 → W𝑚𝑅

for𝑚 ≤ 𝑛. It should come as no surprise that this map is,
again, a ring homomorphism. It additionally composes well
with itself and with the full truncating map. The imaginative
reader may now see the lower triangle in Fig. 2, with W𝑅

CPP ’21, January 18–19, 2021, Virtual, Denmark Johan Commelin and Robert Y. Lewis

W𝑛 (Z/𝑝Z) Z/𝑝𝑛Z

W𝑚 (Z/𝑝Z) Z/𝑝𝑚Z

≃

trunc mod

≃

Figure 3. The isomorphismW𝑛 (Z/𝑝Z) ≃ Z/𝑝𝑛Z commutes
with trunc and mod.

in the middle andW𝑛+1𝑅 andW𝑛𝑅 on the sides. Indeed, the
rest of the diagram follows with no trouble: given a family of
compatible maps 𝑆 →W𝑛𝑅, we can produce a unique map
𝑆 →W𝑅.

We have said little about the formalization of this section
because there is almost nothing to say. No argument in this
file takes more than a few lines of code: ring-theoretic ma-
chinery and a few simplification lemmas give us everything
practically for free. It is surprising, then, that this section
contains one of the rare occasions in which we avoid a ring-
theoretic definition. The type truncated_witt_vector p
n R could have been represented as the quotient ofW R by
the ideal ⟨x : W R | ∀ i < n, x.coeff i = 0⟩. While el-
egant in principle, this approach made the definition of coef-
ficients of a truncated Witt vector rather annoying, whereas
the more direct definition was entirely free of hassle.

6.2 Constructing the Isomorphism
We now know that Z𝑝 is the projective limit of Z/𝑝𝑛Z and
W𝑅 is the projective limit ofW𝑛𝑅. It is finally time to special-
ize the arbitrary ring𝑅 toZ/𝑝Z. To establish thatW(Z/𝑝Z) ≃
Z𝑝 , it suffices by the uniqueness of the projective limit to
show thatW𝑛 (Z/𝑝Z) ≃ Z/𝑝𝑛Z.
It follows immediately that |W𝑛 (Z/𝑝Z) | = 𝑝𝑛 . A general

result shows that a ring 𝑅 with cardinality 𝑛 and characteris-
tic 𝑛 must have a unique isomorphism to Z/𝑛Z, since both
unit elements generate the ring as additive group. Show-
ing thatW𝑛 (Z/𝑝Z) has characteristic 𝑛, though, takes some
machinery: the proof invokes both the Frobenius and Ver-
schiebung operators and the identity 𝐹 ◦𝑉 = [𝑝]. Interest-
ingly, this is the first and only time in this development that
we invoke 𝐹 and 𝑉 , but developing the theories of these
operators seems to be the shortest path to this result.
This isomorphism commutes with the truncation and

mod operators (Fig. 3). We then define a family of ring ho-
momorphismsW(Z/𝑝Z) → Z/𝑝𝑛Z by composing this iso-
morphismwith the truncationmap from the previous section.
This family is compatible, and thus the universal property
of Z𝑝 lifts it to a homomorphism W(Z/𝑝Z) → Z𝑝 . Simi-
larly, composing the isomorphism with the homomorphism
Z𝑝 → Z/𝑝𝑛Z gives a compatible family of homomorphisms
Z𝑝 → W𝑛 (Z/𝑝Z), which the universal property ofW lifts
to a homomorphism Z𝑝 → W(Z/𝑝Z). The uniqueness of

the limit, and some straightforward rewriting, let us quickly
establish that these maps are inverses, and thus the two rings
are isomorphic.

def equiv : W (zmod p) ≃+∗ Z_[p] :=
{ to_fun := to_padic_int p,
inv_fun := from_padic_int p,
left_inv := from_padic_comp_to_padic_ext _,
right_inv := to_padic_comp_from_padic_ext _,
map_mul := ring_hom.map_mul _,
map_add := ring_hom.map_add _ }

7 Concluding Thoughts
The witt_vector directory of our mathlib branch contains
around 3500 lines of code, including comments and white-
space, discounting preliminaries that will be moved to other
locations. Another 1000 lines have been added to the padics
directory. This counts only material corresponding to sec-
tions 3–6. Many thousands more lines of preliminaries, es-
pecially about multivariate polynomials, have been or will
be incorporated into mathlib. While these comparisons are
difficult to make scientifically, we estimate that the 3500 lines
correspond to seven dense pages of Hazewinkel [14].

To the best of our knowledge, the ring of Witt vectors has
never before been defined in a proof assistant. Lewis [17]
surveys the formal developments of 𝑝-adic numbers appear-
ing in the literature. While Pelayo, Voevodsky, and War-
ren [23] take an algebraic approach to defining Z𝑝 that may
be amenable to establishing its advanced algebraic proper-
ties, their development does not go beyond the basic ring
structure. Other proof assistant libraries defining Z𝑝 appear
to be similarly limited.
Of course, many libraries contain substantial algebraic

developments. In particular, Coq’s Mathematical Compo-
nents library [20] contains enough group theory to support
Gonthier et al’s formalization of the odd order theorem [10].
Others, including Cano et al [4], have enriched the library’s
ring theory content, but have focused on computational
aspects. Isabelle’s HOL-Algebra library covers many ring-
theoretic topics and an entry by Bordg [1] in the Archive of
Formal Proofs constructs ring localizations; the Mizar Math-
ematical Library also contains a number of articles on ring
theory, including by Korniłowicz and Schwarzweller [15]
and Watase [30]. Avelar et al [6] describe a formalization of
elementary ring theory in PVS. We are not aware of a devel-
opment of DVRs or related topics in any of these systems.

Much has been written about different methods for defin-
ing and maintaining hierarchies of algebraic structures in
proof assistants [12, 19, 24, 27]. In some sense, our project
is orthogonal to this literature: we work at a single fixed
point within mathlib’s type class hierarchy. Nonetheless,
there may be some insight here. An early attempt at defining
Witt vectors in Lean succumbed to type class searches that
were inexplicably long and slow. A combination of library

Formalizing the Ring of Witt Vectors CPP ’21, January 18–19, 2021, Virtual, Denmark

refactoring and improved caching in Lean 3’s type class infer-
ence have largely resolved these performance issues. Library
refactoring, of course, is rarely fun, and it is preferable to
design hierarchies right the first time. Tools like Cohen, Sak-
aguchi, and Tassi’s Hierarchy Builder [5] show enormous
promise here. The tabled type class resolution procedure im-
plemented in Lean 4 by Selsam, Ullrich, and de Moura [26]
will also allow more flexibility in hierarchy design.

While we were not expecting it from the start, a very lim-
ited amount of Lean metaprogramming ended up tidying
our proof scripts significantly (Section 5.3). These tactics did
not just shorten the scripts, but reduced many of them to the
point where the human input—expressions and references to
lemmas—was essentially the same as it would be informally.
We stress that writing these simple tactics requires no knowl-
edge of the proof assistant’s architecture or foundations and
minimal familiarity with the metaprogramming framework.
Mathematical users, especially those who recognize these
repetitive proofs in their own developments, would spend
their time well gaining this minimal familiarity.
Future work on this topic could go in various directions.

Some directions lift extra structure on the base ring 𝑅 to
extra structure onW𝑅. If 𝑅 is an integral domain of charac-
teristic 𝑝 , then W𝑅 is an integral domain; if 𝑘 is a perfect
field of characteristic 𝑝 , thenW𝑘 is a discrete valuation ring.
All the ingredients in the definition of 𝑝-adic period ring 𝐵dR
by Fontaine [9] are now available in Lean. Orthogonally, we
could define “big” Witt vectors, of which the 𝑝-typical Witt
vectors described here are a quotient.

Acknowledgments
We thank Jeremy Avigad, Jasmin Blanchette, Kevin Buzzard,
Sander Dahmen, Gabriel Ebner, and the anonymous review-
ers for their insightful comments on drafts of this paper. We
thank the mathlib community, in particular Anne Baanen
and Kevin Buzzard, for carefully reviewing our formalization
as it was added to the library.
The first author receives support from the Deutsche For-

schungs Gemeinschaft (DFG) under Graduiertenkolleg 1821
(Cohomological Methods in Geometry).

The second author receives support from the European
Research Council (ERC) under the EuropeanUnion’s Horizon
2020 research and innovation program (grant agreement No.
713999, Matryoshka) and from the Dutch Research Council
(NWO) under the Vidi program (project No. 016.Vidi.189.037,
Lean Forward).

References
[1] Anthony Bordg. 2018. The Localization of a Commutative Ring. Archive

of Formal Proofs (June 2018). http://isa-afp.org/entries/Localization_
Ring.html, Formal proof development.

[2] T. D. Browning. 2018. How often does the Hasse principle hold? In
Algebraic geometry: Salt Lake City 2015. Proc. Sympos. Pure Math.,
Vol. 97. Amer. Math. Soc., Providence, RI, 89–102. https://doi.org/10.

1090/PSPUM/097.2/01700
[3] Kevin Buzzard, Johan Commelin, and Patrick Massot. 2020. Formalis-

ing Perfectoid Spaces. In Proceedings of the 9th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs (New Orleans, LA,
USA) (CPP 2020). Association for Computing Machinery, New York,
NY, USA, 299–312. https://doi.org/10.1145/3372885.3373830

[4] Guillaume Cano, Cyril Cohen, Maxime Dénès, Anders Mörtberg, and
Vincent Siles. 2016. Formalized linear algebra over elementary divisor
rings in Coq. Logical Methods in Computer Science 12, 2 (Jun 2016).
https://doi.org/10.2168/lmcs-12(2:7)2016

[5] Cyril Cohen, Kazuhiko Sakaguchi, and Enrico Tassi. 2020. Hierarchy
Builder: algebraic hierarchies made easy in Coq with Elpi. (Feb. 2020).
https://doi.org/10.4230/LIPIcs.CVIT.2016.23

[6] Andréia B. Avelar da Silva, Thaynara Arielly de Lima, and André Luiz
Galdino. 2018. Formalizing Ring Theory in PVS. In Interactive Theorem
Proving - 9th International Conference, ITP 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018,
Proceedings (Lecture Notes in Computer Science, Vol. 10895), Jeremy
Avigad and Assia Mahboubi (Eds.). Springer, 40–47. https://doi.org/
10.1007/978-3-319-94821-8_3

[7] Sander R. Dahmen, Johannes Hölzl, and Robert Y. Lewis. 2019. For-
malizing the Solution to the Cap Set Problem. In 10th International
Conference on Interactive Theorem Proving (ITP 2019) (Leibniz Inter-
national Proceedings in Informatics (LIPIcs), Vol. 141), John Harri-
son, John O’Leary, and Andrew Tolmach (Eds.). Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 15:1–15:19.
https://doi.org/10.4230/LIPIcs.ITP.2019.15

[8] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and
Leonardo de Moura. 2017. A metaprogramming framework for formal
verification. PACMPL 1, ICFP (2017), 34:1–34:29. https://doi.org/10.
1145/3110278

[9] Jean-Marc Fontaine. 1994. Le corps des périodes 𝑝-adiques. Number
223. 59–111. With an appendix by Pierre Colmez, Périodes 𝑝-adiques
(Bures-sur-Yvette, 1988).

[10] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril
Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Rus-
sell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey
Solovyev, Enrico Tassi, and Laurent Théry. 2013. A Machine-Checked
Proof of the Odd Order Theorem. In ITP 2013. 163–179. https:
//doi.org/10.1007/978-3-642-39634-2_14

[11] Fernando Q. Gouvêa. 1997. 𝑝-adic Numbers (second ed.). Springer,
Berlin. vi+298 pages. https://doi.org/10.1007/978-3-642-59058-0

[12] Adam Grabowski, Artur Kornilowicz, and Christoph Schwarzweller.
2016. On algebraic hierarchies in mathematical repository of Mizar. In
Proceedings of the 2016 Federated Conference on Computer Science and
Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11-14,
2016. 363–371. https://doi.org/10.15439/2016F520

[13] Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John
Harrison, Truong Le Hoang, Cezary Kaliszyk, Victor Magron, Sean
McLaughlin, Thang Tat Nguyen, Truong Quang Nguyen, Tobias Nip-
kow, Steven Obua, Joseph Pleso, Jason M. Rute, Alexey Solovyev,
An Hoai Thi Ta, Trung Nam Tran, Diep Thi Trieu, Josef Urban,
Ky Khac Vu, and Roland Zumkeller. 2017. A formal proof of the
Kepler conjecture. Forum of Mathematics, Pi 5 (2017), e2. https:
//doi.org/10.1017/fmp.2017.1

[14] Michiel Hazewinkel. 2009. Witt vectors. Part 1. Handbook of Algebra
(2009), 319–472. https://doi.org/10.1016/s1570-7954(08)00207-6

[15] Artur Korniłowicz and Christoph Schwarzweller. 2014. The First
Isomorphism Theorem and Other Properties of Rings. Formalized
Mathematics 22, 4 (2014), 291–301. https://doi.org/10.2478/forma-
2014-0029

[16] Christer Lech. 1953. A note on recurring series. Ark. Mat. 2, 5 (08
1953), 417–421. https://doi.org/10.1007/BF02590997

http://isa-afp.org/entries/Localization_Ring.html
http://isa-afp.org/entries/Localization_Ring.html
https://doi.org/10.1090/PSPUM/097.2/01700
https://doi.org/10.1090/PSPUM/097.2/01700
https://doi.org/10.1145/3372885.3373830
https://doi.org/10.2168/lmcs-12(2:7)2016
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://doi.org/10.1007/978-3-319-94821-8_3
https://doi.org/10.1007/978-3-319-94821-8_3
https://doi.org/10.4230/LIPIcs.ITP.2019.15
https://doi.org/10.1145/3110278
https://doi.org/10.1145/3110278
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1007/978-3-642-59058-0
https://doi.org/10.15439/2016F520
https://doi.org/10.1017/fmp.2017.1
https://doi.org/10.1017/fmp.2017.1
https://doi.org/10.1016/s1570-7954(08)00207-6
https://doi.org/10.2478/forma-2014-0029
https://doi.org/10.2478/forma-2014-0029
https://doi.org/10.1007/BF02590997

CPP ’21, January 18–19, 2021, Virtual, Denmark Johan Commelin and Robert Y. Lewis

[17] Robert Y. Lewis. 2019. A formal proof of Hensel’s lemma over the
𝑝-adic integers. In Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal,
January 14-15, 2019. 15–26. https://doi.org/10.1145/3293880.3294089

[18] Robert Y. Lewis and Paul-Nicolas Madelaine. 2019. Simplifying Casts
and Coercions. In PAAR 2020: Seventh Workshop on Practical Aspects of
Automated Reasoning, June 29–30, 2020, Paris, France (virtual). 53–62.
http://ceur-ws.org/Vol-2752/paper4.pdf

[19] Assia Mahboubi and Enrico Tassi. 2013. Canonical Structures for
the Working Coq User. In Interactive Theorem Proving - 4th Interna-
tional Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceed-
ings (Lecture Notes in Computer Science, Vol. 7998), Sandrine Blazy,
Christine Paulin-Mohring, and David Pichardie (Eds.). Springer, 19–34.
https://doi.org/10.1007/978-3-642-39634-2_5

[20] Assia Mahboubi and Enrico Tassi. 2020. Mathematical Components.
Zenodo. https://doi.org/10.5281/zenodo.4282710

[21] The mathlib Community. 2020. The Lean Mathematical Library. In
CPP (New Orleans, LA, USA). ACM, New York, NY, USA, 367–381.
https://doi.org/10.1145/3372885.3373824

[22] William McCallum and Bjorn Poonen. 2012. The method of Chabauty
and Coleman. In Explicit methods in number theory. Panor. Synthèses,
Vol. 36. Soc. Math. France, Paris, 99–117.

[23] Álvaro Pelayo, Vladimir Voevodsky, and Michael A. Warren. 2015. A
univalent formalization of the p-adic numbers.Mathematical Structures
in Computer Science 25, 5 (2015), 1147–1171. https://doi.org/10.1017/
S0960129514000541

[24] Kazuhiko Sakaguchi. 2020. Validating Mathematical Structures. arXiv.
arXiv:2002.00620 [cs.PL] https://arxiv.org/abs/2002.00620

[25] Hermann Ludwig Schmid. 1936. Zyklische algebraische Funktio-
nenkörper vom Grade 𝑝𝑛 über endlichem Konstantenkörper der
Charakteristik 𝑝 . Journal für die reine und angewandte Mathematik
1936, 175 (1936), 108 – 123. https://doi.org/10.1515/crll.1936.175.108

[26] Daniel Selsam, Sebastian Ullrich, and Leonardo de Moura. 2020. Tabled
Typeclass Resolution. arXiv:2001.04301 [cs.PL]

[27] Bas Spitters and Eelis van der Weegen. 2011. Type classes for mathe-
matics in type theory. Mathematical Structures in Computer Science 21,
4 (2011), 795–825. https://doi.org/10.1017/S0960129511000119

[28] Neil Strickland and Nicola Bellumat. 2019. Iterated chromatic localisa-
tion. arXiv:1907.07801 [math.AT]

[29] Philip Wadler and Stephen Blott. 1989. How to Make ad-hoc Poly-
morphism Less ad-hoc. In Proceedings of POPL 1989. 60–76. https:
//doi.org/10.1145/75277.75283

[30] Yasushige Watase. 2020. Rings of Fractions and Localization. Formal-
ized Mathematics 28, 1 (2020), 79–87. https://doi.org/10.2478/forma-
2020-0006

[31] Freek Wiedijk. 2007. The QED Manifesto Revisited.
[32] E. Witt. 1937. Zyklische Körper und Algebren der Charakteristik

𝑝 vom Grad 𝑝𝑛 . Struktur diskret bewerteter perfekter Körper mit
vollkommenem Restklassenkörper der Charakteristik 𝑝 . Journal für
die reine und angewandte Mathematik (Crelles Journal) 1937 (1937), 126
– 140. https://doi.org/10.1515/crll.1937.176.126

https://doi.org/10.1145/3293880.3294089
http://ceur-ws.org/Vol-2752/paper4.pdf
https://doi.org/10.1007/978-3-642-39634-2_5
https://doi.org/10.5281/zenodo.4282710
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1017/S0960129514000541
https://doi.org/10.1017/S0960129514000541
https://arxiv.org/abs/2002.00620
https://arxiv.org/abs/2002.00620
https://doi.org/10.1515/crll.1936.175.108
https://arxiv.org/abs/2001.04301
https://doi.org/10.1017/S0960129511000119
https://arxiv.org/abs/1907.07801
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://doi.org/10.2478/forma-2020-0006
https://doi.org/10.2478/forma-2020-0006
https://doi.org/10.1515/crll.1937.176.126

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Qp and Zp
	2.2 The Ring of p-Typical Witt Vectors
	2.3 Universal Calculations
	2.4 Witt Vectors over Z/pZ
	2.5 Lean and mathlib

	3 Algebra of Zp
	3.1 Algebraic Instances
	3.2 Universal Property

	4 Witt Polynomials and Vectors
	4.1 Monadic Approach to Polynomials
	4.2 Witt Polynomials and Structure Polynomials
	4.3 The Type of p-Typical Witt Vectors
	4.4 Universal Calculations

	5 Ring Structure and Other Operations
	5.1 The Ring of Witt Vectors
	5.2 Operators
	5.3 Auxiliary Tactics

	6 Isomorphism with Zp
	6.1 Truncated Witt Vectors
	6.2 Constructing the Isomorphism

	7 Concluding Thoughts
	Acknowledgments
	References

